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Repression of lncRNA PART1 attenuates 
ovarian cancer cell viability, migration 
and invasion through the miR-503-5p/FOXK1 
axis
Bing Li1*  , Ge Lou1, Jiahui Zhang2, Ning Cao1 and Xi Yu1 

Abstract 

Background:  Ovarian cancer (OC) is a female malignant tumor with a high fatality rate. Long non-coding RNAs 
(lncRNAs) are deeply involved in OC progression. The aim of this study is to explore the specific mechanism of lncRNA 
prostate androgen-regulated transcript 1 (PART1) in OC.

Methods:  Quantitative real time PCR was utilized to determine the expression levels of PART1, microRNA (miR)-
503-5p and forkhead-box k1 (FOXK1) in OC tissues and/or cells. The cell viability, migration, and invasion in OC were 
evaluated by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide assay, wound healing assay and 
transwell invasion assay, respectively. Flow cytometry was used to analyze the cell apoptosis. The xenograft tumor 
was conducted in nude mice to verify the effect of PART1 knockdown on OC in vivo. The target relationships among 
PART1, miR-503-5p and FOXK1 were predicted by StarBase, and verified by luciferase reporter assay. The level of FOXK1 
was assessed by western blot.

Results:  Increased expression of PART1 and FOXK1 was observed in OC tissues or cells, whereas miR-503-5p was 
downregulated. PART1 silencing or miR-503-5p overexpression repressed the cell viability, migration and invasion, 
and protomed apoptosis. Meanwhile, miR-503-5p was a target of PART1, and FOXK1 was a direct target gene of miR-
503-5p. Both downregulation of miR-503-5p and upregulation of FOXK1 partly relieved the suppressive effects of 
PART1 knockdown on the oncogenicity of OC in vitro.

Conclusion:  Decreased PART1 represses the cell viability, migration and invasion of OC via regulating the miR-
503-5p/FOXK1 axis, which provided an underlying target for treating OC.
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Background
Ovarian cancer (OC), a type of representative malignant-
tumor in women with a high mortality rate of 70%, typi-
cally originates from ovarian epithelial cells [1–3]. With 

no obvious clinical symptoms in early stage and the limi-
tations of the current diagnostic-methods, OC is gener-
ally diagnosed at an advanced stage accompanied with a 
wide range of metastasis [4–6]. Currently, there are still 
no efficient therapies to improve the 5-year survival rate 
(20–40%) for the advanced OC [7]. Therefore, exploring 
the pathogenesis of OC and developing some underlying 
targets are urgent for the treatment of OC.
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Long non-coding RNAs (lncRNAs) are a kind of RNA 
with a length of 200 nucleotides [8]. Numerous lncR-
NAs are identified to deeply participate in the molecu-
lar mechanism of human cancers, including OC [9–11]. 
LncRNA prostate androgen-regulated transcript  1 
(PART1) has been confirmed to play a promoting role 
in cancers, such as non-small cell lung cancer [12], 
colorectal cancer [13], and prostate cancer [14]. Nota-
bly, Zhao et al. used univariate Cox regression analysis 
and established a risk assessment system for OC, indi-
cating that PART1 can serve as a prognostic marker of 
OC [15]. However, detailing mechanism of PART1 in 
OC progression is largely unknown.

More attention has been paid to the anti-tumor 
roles of microRNAs (miRNAs) in OC at the cellular 
level [16–18]. For instance, miR-15a-3p downregula-
tion aggravates malignant phenotype of OC through 
facilitating the growth and metastasis of OC cells [16]. 
Overexpression of miR-126-3p [17] and miR-1182 [18] 
inhibits cell proliferation, migration, and invasion in 
OC. Additionally, decreased miR-503 can enhance 
the drug resistance of OC [19], and is strongly associ-
ated with the increasing rate of cell proliferation and 
metastasis in OC [20]. It is acknowledged that lncRNAs 
can act as competing endogenous RNAs or sponges 
of miRNAs in cancer progression [21, 22]. Sun et  al. 
have confirmed that MALAT1 can interact with miR-
503-5p to mediate OC cell proliferation and apoptosis 
[21]. PART1 may act as a competing endogenous RNA 
of miR-503-5p in tongue squamous cell carcinoma to 
modulate cancer progression [22]. PART1 also accel-
erates cisplatin (DDP) resistance of OC via regulation 
of miR-512-3p, suggesting PART1 may be a promising 
therapeutic target for DDP-resistant OC patients [23]. 
Nevertheless, miR-503-5p interaction with PART1 in 
the progression of OC remains unclear.

Forkhead box k1 (FOXK1), a transcription factor 
in tumorigenesis, is reported to serve as an oncogene 
regulated by miRNAs to promote tumor progression 
in various human cancers, such as gastric cancer [24], 
osteosarcoma [25], pancreatic cancer [26], and colo-
rectal cancer [27]. In addition, through enhancement 
FOXK1 expression, Aurora-A/SOX8 axis promotes the 
chemosensitivity and inhibits cell senesence in OC [28]. 
Meanwhile, FOXK1 can promote the cell metastasis and 
proliferation in OC through mediating p21 expression 
[29]. However, whether FOXK1 is regulated by miR-
503-5p to mediate OC progression and its underlying 
mechanism are still unknown.

In this study, we detected the expression of PART1, 
miR-503-5p, and FOXK1 in OC tissues and cells, and 
analyzed the function of PART1 silencing on OC pro-
gress. Furthermore, the interactions among PART1, 

miR-503-5p and FOXK1 were also determined. Our 
results may provide an underlying therapeutic target for 
OC.

Methods
Cancer samples collection
From May 2018 to June 2019, 50 pairs OC tissues and 
adjacent normal ovary epithelial tissues were separated 
from OC patients by resection. Each volunteer was diag-
nosed by histological examination and had not received 
any treatments before admission. This study was per-
formed in accordance with the principles of the Decla-
ration of Helsinki. Approval was granted by the Ethics 
Committee of Harbin Medical University Cancer Hospi-
tal (Approval No.: KY2018–29) All participants provided 
the written informed consent.

Cell culture
Three human OC cell lines (CaoV-3, SK-OV-3, and 
HO-8910) and normal human ovarian epithelial cells 
(IOSE80) were procured from American Type Culture 
Collection (ATCC; Manassas, VA, USA) and then cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM 
containing 10% fatal bovine serum (FBS) in an incubator 
with 5% CO2 at 37 °C.

Quantitative real time PCR (qRT‑PCR)
Total RNA was extracted from OC cell lines and tis-
sues by total RNA Extraction Kit (Solarbio Science & 
Technology, Beijing, China), followed by synthesizing to 
cDNA using First-Strand cDNA Synthesis Kit (APExBIO 
Technology, Houston, TX, USA). qRT-PCR was then 
performed with SYBR Green FAST Mastermix (Qiagen). 
The 2-ΔΔCT method was utilized to calculate the relative 
expression. GAPDH (for PART1 and FOXK1) or U6 (for 
miR-503-5p) were used as the internal controls.

Cell transfection
ShRNAs targeting PART1 (sh-PART1–1/− 2/− 3) and 
its negative control (sh-NC), miR-503-5p inhibitor/
inhibitor NC and miR-503-5p mimics/miR-NC, as well 
as overexpression of FOXK1 (pcDNA3.1-FOXK1) and 
the empty vector (pcDNA3.1) were all purchased from 
VectorBuilder (Guangzhou, China). The transfection 
experiments were performed using Lipofectamine 3000 
(Invitrogen, Nanjing, China). After transfection for 48 h, 
the cells were collected for the subsequent experiments.

3‑(4, 5‑dimethyl‑2‑thiazolyl)‑2, 5‑diphenyl‑2‑h‑tetrazolium 
bromide (MTT) assay
The transfected SK-OV-3 and/or HO-8910 cells were cul-
tured in 96-well plates with a density of 0.2 × 104. After 
24, 48, and 72 h of culturing, approximately 20 μL MTT 



Page 3 of 12Li et al. BMC Cancer          (2022) 22:124 	

(Keygen Biotech, Nanjing, China) was supplemented to 
incubate another 2 h at 37 °C. The absorbance values were 
detected by a micro-plate reader (Molecular Devices, 
Shanghai, China) at the wavelength of 450 nm.

Wound healing assay
The transfected SK-OV-3 and/or HO-8910 cells (1 × 105 
cells/μl) were seeded in 12-well plates and grown 
approximately 100% confluence, followed by creating the 
wounds using a pipette tip. Afterwards, the cells were 
incubated for 1 day at 37 °C. The photomicrographs of the 
scratch wounds were captured using a light microscope 
and the relative migration rate was assessed.

Transwell assay
The upper chamber was inserted with a matrigel in 
advance. The transfected SK-OV-3 and/or HO-8910 cells 
(2 × 105) were cultured in the upper chamber with FBS-
free DMEM. After that, DMEM with 10% FBS was added 
to the lower chamber. After 24 h of culturing, the metas-
tasizing cells were stained with 0.5% crystal violet and 
counted under an inverted microscope.

Flow cytometry analysis
The apoptosis of SK-OV-3 and/or HO-8910 cells was 
evaluated using the Annexin V- FITC apoptosis detec-
tion kit (Thermo Fisher Scientific, Waltham, MA, USA) 
in accordance with the manufacturer’s protocol. Briefly, 
2 × 105 cells were re-suspended in 500 μl binding buffer 
and stained with Annexin V-EGFP and PI (both 5 μl) at 
4 °C for 15 min in the dark. Subsequently, cell apoptosis 
was assessed using a FACScan flow cytometer (Becton, 
Dickinson and Company, Franklin Lakes, NJ, USA).

Dual Luciferase Reporter (DLR) assay
The fragments of PART1/FOXK1 containing miR-503-5p 
binding sites (including WT and MUT) were inserted 
into pGL3 vector to establish the recombinant reporter 
plasmids. Subsequently, SK-OV-3 and HO-8910 cells 
(2 × 105 cells/well) were co-transfected with miR-503-5p 
mimics/miR-NC, and PART1/FOXK1-WT or PART1/
FOXK1-MUT using Lipofectamine 3000 (Invitrogen). 
After incubation for 48 h 37 °C, the luciferase activity was 
analyzed using a dual-luciferase reporter gene assay sys-
tem (Promega Corporation).

Western blot assay
The OC cells and the tumor xenograft tissues were lysed 
with RIPA buffer, followed by separating the protein 
product using 10% SDS-PAGE and transferring into 
PVDF membrane. The membrane was incubated with the 
primary antibody FOXK1 (1:1000, Sigma Aldrich) and 
β-actin (1:1000, Sigma Aldrich) at 4 °C overnight. Then, 

the HRP-conjugated secondary antibody (1:3000; Sigma 
Aldrich) was added to incubate for 1 h at room temper-
ature. β-actin was used as the internal control. Immu-
noblotting was visualized using an ECL detection kit 
(Amersham Biosciences, Sweden).

Tumor xenograft experiments
A total of 10 BALB/c nude mice (4–5 week, 22–24 g; 
EseBio, Shanghai, China) were assigned into two groups 
(n = 5) at random: the sh-NC group and sh-PART1–2 
group. Afterward, sh-PART1–2 or sh-NC was inte-
grated into lentiviral vector (Lv) and then transfected 
into SK-OV-3 cells. The mice were then anesthetized 
with 50 mg/kg pentobarbital sodium and subcutane-
ously injected with the aforementioned SK-OV-3 cells 
(1 × 106). The tumor length (A) and width (B) were meas-
ured weekly, and the tumor volume was calculated with 
the formula of V = 1/2 AB2. After 5 weeks, mice were sac-
rificed and the tumors were collected and weighed. The 
experimental procedures were strictly in accordance with 
the principles of the Basel Declaration and the Guidelines 
for the Care and Use of Laboratory Animals Established 
by United States National Institutes of Health. Mean-
while, this study was approved by the ethics committee of 
Harbin Medical University Cancer Hospital.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay
Histological apoptosis was detected using a TUNEL kit 
(TransGen Biotech, Beijing, China). In brief, the tumor 
xenograft samples were fixed with 4% paraformalde-
hyde at 4 °C for 4 h. Following this, samples were treated 
with 3% hydrogen peroxidase and incubated in a labe-
ling reaction mixture comprised of terminal deoxynu-
cleotidyl transferase and deoxynucleotides overnight at 
4 °C. Sections were then subjected to further incubation 
with horseradish peroxidase (1:500; Macklin Biochemi-
cal, Shanghai, China) for 30 min and treatment with 
3,3′-diaminobenzidine for 15 min at 37 °C in the dark. 
Reactions were stopped with running water and coun-
terstaining was performed with hematoxylin at 37 °C 
for 10 min. Following dehydration with a graded ethyl 
alcohol series and xylene treatment, tissue samples were 
mounted on coverslips with neutral gum. Apoptotic 
nuclei appeared as dark brown dots. TUNEL-positive 
cells were counted in five randomly selected regions 
(magnification, × 200), and the percentage of TUNEL-
positive cells was calculated using Image-Pro Plus soft-
ware (Media Cybernetics, Silver Spring, MD, USA).

Statistical analysis
Data in this study were in three independent experiments 
and shown as means ± SD. SPSS 23.0 software was used 
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to analyzed the comparison between two groups (two-
tailed t-test) and multiple groups (one-way ANOVA). 
The linear correlation was assessed using Pearson’s cor-
relation. Significance difference was considered when 
P < 0.05.

Results
High expression of PART1 is identified in OC tissues 
and cell lines
First of all, we explored the expression of PART1 in sev-
eral types of human cancer using GEPIA database. As 
illustrated in Fig. 1A, we found that PART1 was overex-
pressed in kidney chromophobe (KICH), ovarian serous 
cystadenocarcinoma (OV), thymoma (THYM), and uter-
ine corpus endometrial carcinoma (UCEC). Afterwards, 
the expression of PART1 in OC and normal ovary epithe-
lial tissues was detected by qRT-PCR. The results showed 
that PART1 was over-expressed in OC tissues by con-
trast to that of normal tissues (Fig. 1B, P < 0.001). Addi-
tionally, an increased PART1 was found in Federation 

International of Gynecology and Obstetrics (FIGO) stage 
III/IV compared to FIGO grade I/II (Fig.  1C, P < 0.01), 
and in metastasis tissues than that in the non-metasta-
sis tissues (Fig.  1D, P < 0.01). As exhibited in Table  1, 
there were significant differences between the high and 
low expression of PART1 in lymph node metastasis and 
FIGO stage (P < 0.05). Furthermore, we also found an 
enhanced expression of PART1 in OC cell lines (CaoV-
3, SK-OV-3, and HO-8910) in comparison to the IOSE80 
cells (Fig.  1E, P < 0.01). Among these three cell lines, 
SK-OV-3 and HO-8910 were selected in the subsequent 
experiments on account of the relatively high expression 
of PART1.

PART1 knockdown represses the viability, migration 
and invasion of OC cell lines
Sh-PART1–1, sh-PART1–2, or sh-PART1–3 was 
transfected into SK-OV-3 and HO-8910 cells respec-
tively to assess the transfection efficiency. The 
results showed that PART1 expression was distinctly 

Fig. 1  High expression of PART1 is identified in OC tissues and cell lines. A The expression of PART1 in different types of human cancer. B The 
expression of PART1 in OC tissues (n = 50) and normal ovary epithelial tissues (n = 50) and C in III/IV stage tissues (n = 28) and I/II stage tissues 
(n = 22) was detected by qRT-PCR. **P < 0.01 vs. the I/II group. D The expression of PART1 in metastasis tissues (n = 23) and non-metastasis tissues 
(n = 27) was detected. **P < 0.01 vs. the non-metastasis group. E The expression of PART1 in OC cell lines (CaoV-3, SK-OV-3, and HO-8910) and 
human ovarian epithelial cells (IOSE80) was detected by qRT-PCR. **P < 0.01, ***P < 0.001 vs. the IOSE8 cells group
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decreased (Fig. 2A, P < 0.001) after transfection. Next, 
sh-PART1–2 was chosen to perform the functional 
experiments due to its relatively high transfection effi-
ciency. Based on the results of MTT, wound healing, 
and transwell assays, we found that transfection with 
sh-PART1–2 suppressed the viability, migration, and 
invasion of SK-OV-3 and HO-8910 cells (Fig. 2B-D, P 
< 0.01). In addition, the apoptosis of OC cells in the sh-
PART1–2 group was significantly promoted compared 
to that in the sh-NC group (Fig. 2E, P < 0.05).

PART1 targets miR‑503‑5p
After predicting the downstream target miRNA of 
PART1 using StarBase software, 35 miRNAs which 
may be the potential targets of PART1 were found 
(data were shown in supplementary Table  1). Finally, 
miR-503-5p was chosen due to its important role in 
OC pathogenesis [19–21]. The predicted binding site 
between PART1 and miR-503-5p was presented in 
Fig.  3A. We then conducted a DLR assay in SK-OV-3 
and HO-8910 cells to validate this target relationship. 
The results indicated that transfection of miR-503-5p 
mimics reduced the luciferase activity compared to 
that of PART1-WT/miR-NC (Fig. 3B, P < 0.001). After-
wards, we discovered a relatively lower expression of 
miR-503-5p in OC tissues than the normal ovary epi-
thelial tissues (Fig. 3C, P < 0.001). Pearson’s correlation 
analysis demonstrated that the expression of PART1 
and miR-503-5p exhibited a negative correlation in OC 
tissues (Fig. 3D; P < 0.001, R2 = 0.665). Additionally, we 
found that both in SK-OV-3 and HO-8910 cells, miR-
503-5p expression was markedly enhanced after trans-
fection with sh-PART1–2 (Fig. 3E, P < 0.001).

Overexpressed miR‑503‑5p inhibits the viability, migration 
and invasion, and induces apoptosis of SK‑OV‑3 cells
We then determined the transfection efficiency of miR-
503-5p mimics/miR-NC or miR-503-5p inhibitor/
inhibitor NC. As expected, miR-503-5p expression was 
increased by transfection of miR-503-5p mimics, whereas 
was decreased after transfection of miR-503-5p inhibitor 
(Fig. 4A, P < 0.001). The results implied that miR-503-5p 
mimics/miR-NC or miR-503-5p inhibitor/inhibitor 
NC was transfected successfully. We then explored the 
effect of miR-503-5p overexpression on OC progres-
sion in vitro. As illustrated in Fig. 4B-E, compared to the 
miR-NC group, the viability, migration and invasion of 
SK-OV-3 cells were significantly inhibited and the apop-
tosis capacity was increased in the miR-503-5p mimics 
group (P < 0.01).

miR‑503‑5p targets and mediates FOXK1 expression
StarBase software was used to explore the downstream 
gene of miR-503-5p in OC. A total of 6161 mRNAs 
were predicted (data were not shown) and FOXK1 was 
selected in this study on account of its crucial role in OC 
[28, 29] and unknown relationship with miR-503-5p. As 
shown in Fig.  5A, the binding site between them was 
exhibited. Afterwards, the results of DLR assay showed 
that the luciferase activity of SK-OV-3 and HO-8910 cells 
in the miR-503-5p mimics/ FOXK1-WT group was lower 
than that in the miR-NC/FOXK1-WT group (Fig. 5B, P 
< 0.001). Additionally, FOXK1 was increased in OC tis-
sues by contrast to the normal tissues (Fig. 5C, P < 0.001). 
In addition, we also found FOXK1 was inversely cor-
related with miR-503-5p (Fig.  5D; P < 0.001, R2 = 0.576), 
and was positively correlated with PART1 (Fig.  5E; 
P < 0.001, R2 = 0.6138) in OC tissues. Western blot assay 
further validated these correlations, suggesting that the 
protein level of FOXK1 was repressed by miR-503-5p 
upregulation (Fig. 5F, P < 0.001) and PART1 downregula-
tion (Fig. 5G, P < 0.01). We then determined the transfec-
tion efficiency of sh-FOXK1/sh-NC. As shown in Fig. 5H, 
the expression of FOXK1 was remarkably decreased after 
transfection of sh-FOXK1 (P < 0.01). Flow cytometry 
analysis demonstrated that FOXK1 knockdown could 
significantly increase the apoptosis rate of SK-OV-3 cells 
(Fig. 5I, P < 0.01).

FOXK1 overexpression and miR‑503‑5p inhibitor reverse 
the ameliorative malignant behaviors of OC caused 
by PART1 knockdown
FOXK1 overexpressed plasmid (pcDNA-3.1-FOXK1) 
was first constructed and transfected into SK-OV-3 
cells. We found that PART1 expression was remark-
ably elevated after transfection (Fig.  6A, P < 0.001). 

Table 1  Correlations between lncRNA PART1 expression and 
clinicopathological characteristics in ovarian cancer

FIGO Federation International of Gynecology and Obstetrics

Characteristics Total PART1 expression P-value

Low (25) High (25)

Age 0.284

   < 60 years 21 12 9

   ≥ 60 years 29 13 16

Lymph nodes metastasis P < 0.05

  NO 27 18 9

  YES 23 7 16

FIGO stage P < 0.05

  I/II 22 15 7

  III/IV 28 10 18
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As illustrated in Fig.  6B-D, we demonstrated that the 
viability, migration and invasion were all facilitated 
by FOXK1 overexpression (P < 0.001). Furthermore, 
overexpressed FOXK1 (Fig.  6) or miR-503-5p inhibi-
tor (Supplement Fig.  1) reversed the inhibitory effects 
of PART1 downregulation on the above processes, 
suggesting that repression of PART1 attenuated OC 
cell viability, migration and invasion through the miR-
503-5p/FOXK1 axis.

Silencing of PART1 attenuates the growth of tumor 
xenograft in vivo
We also investigated the effect of PART1 knock-
down on the growth of tumor xenograft in  vivo. As 
shown in Fig. 7A-C, injection of sh-PART1–2 reduced 
tumor volume (P < 0.001), decreased tumor weight 
(P < 0.001), and eventually repressed the growth of 
tumor xenograft. Additionally, the expression levels 
of PART1, miR-503-5p, and FOXK1 in mice injected 

Fig. 2  PART1 knockdown represses the viability, migration, invasion and induces apoptosis of OC cell lines. A The expression of PART1 after 
transfection of sh-PART1–1/− 2/− 3/NC into OC cells (SK-OV-3 and HO-8910) was detected by qRT-PCR. B-E The viability, migration, invasion, and 
apoptosis of OC cells transfected with sh-PART1–2/NC were measured by MTT assay, wound healing assay, invasion assay, and flow cytometry, 
respectively. *P < 0.05, **P < 0.01, ***P < 0.001 vs. the sh-NC group
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Fig. 3  PART1 targets miR-503-5p. A The predicted complementary binding site of PART1 and miR-503-5p. B The luciferase activity in OC cells 
co-transfected with pGL3-PART1 WT/pGL3-PART1 MUT and miR-503-5p/miR-NC was determined by dual luciferase reporter assay. ***P < 0.001 vs. 
the miR-NC group. C The expression of miR-503-5p in OC tissues (n = 50) and normal tissues (n = 50) was detected by qRT-PCR. ***P < 0.001 vs. 
the normal group. D The correlation between the expression PART1 and miR-503-5p in OC tissues was assessed by Pearson’s correlation analysis. 
P < 0.001, R2 = 0.665. E The expression of miR-503-5p after transfection of sh-PART1–2/NC into OC cells was detected by qRT-PCR. ***P < 0.001 vs. the 
sh-NC group

Fig. 4  Overexpressed miR-503-5p inhibits the viability, migration and invasion, and induces apoptosis of SK-OV-3 cells. A The expression of 
miR-503-5p after transfection of miR-NC/ miR-503-5p mimics or inhibitor NC/miR-503-5p inhibitor into SK-OV-3 cells was detected by qRT-PCR. 
***P < 0.001 vs. the miR-NC group, ###P < 0.001 vs. the inhibitor NC group. B-E The viability, migration, invasion and apoptosis of SK-OV-3 cells 
transfected with miR-503-5p mimics/miR-NC was measured by MTT assay, wound healing assay, invasion assay and flow cytometry, respectively. 
**P < 0.01 vs. the miR-NC group
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with sh-PART1–2 demonstrated that injection of sh-
PART1–2 significantly dampened PART1 (Fig.  7D, P 
< 0.01) and FOXK1 (Fig.  7F, P < 0.01), and increased 
miR-503-5p expression (Fig.  7E, P < 0.001). We also 
determined the effect of PART1 knockdown on cell 
apoptosis in the tumor xenograft model. As shown in 
Fig. 7G, the percentages of TUNEL positive cells were 
significantly increased in the sh-PART1–2 group com-
pared with the sh-NC group (P < 0.01).

Discussion
Ovarian cancer is the fifth leading cause of deaths in 
women worldwide [30, 31]. The participation of lncRNAs 
in OC tumorigenesis has been confirmed in the previous 
studies [11, 32]. Kuang et  al. have disclosed that a high 
expression of TUG1 is determined in OC tissues and 
cells, which has strong correlation with FIGO stage [32]. 
Wang et  al. have discovered that TP73-AS1 expression 
in OC tissues and cells is obviously up-regulated, and 
up-regulation of TP73-AS1 is closely correlated to FIGO 
stage and lymph node metastasis [11]. In the current 

Fig. 5  miR-503-5p targets and mediates FOXK1 expression. A The predicted complementary binding site of miR-503-5p and FOXK1. B The 
luciferase activity in OC cells was determined by dual luciferase reporter assay. ***P < 0.001 vs. the miR-NC group. C The expression of FOXK1 in OC 
tissues (n = 50) and normal tissues (n = 50) was detected by qRT-PCR. ***P < 0.001 vs. the normal group. D-E The correlation between the expression 
miR-503-5p and FOXK1 and E PART1 and FOXK1 in OC tissues was assessed by Pearson’s correlation analysis. P < 0.0001, R2 = 0.6138. F The protein 
level of FOXK1 in OC cells after transfection of miR-503-5p mimics/miR-NC or sh-PART1–2/NC (G) was determined by western blot assay. H The 
expression of FOXK1 in SK-OV-3 cells transfected with sh-PART1–2/NC was detected by qRT-PCR. **P < 0.01 vs. the sh-NC group. I The apoptosis of 
SK-OV-3 cells transfected with sh-PART1–2/NC was analyzed by flow cytometry. **P < 0.01 vs. the sh-NC group
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study, we found an overexpressed PART1 in OC tissues 
and cells, and the high expression of PART1 has positive 
correlations with FIGO stage. Hence, PART1 may act as 
an onco-lncRNA in OC.

Many lncRNAs such as MALAT1, DANCR, and TP73-
AS1, act as promoters in carcinogenicity of OC, whereas 
lncRNAs silencing has inhibiting effects on OC progres-
sion [11, 33, 34]. All the above studies further provide 
evidence that lncRNAs knockdown affects the occur-
rence and development of OC. Similarly, we discovered 
that knockdown of PART1 not only inhibits the cellular 
processes (proliferation, migration and invasion) of OC 
cells in vitro, but also plays a negative role in the growth 

of tumor xenograft in  vivo. Silencing of PART1 exerts 
similar influences in several types of cancers, such as 
hepatocellular carcinoma [35], non-small cell lung cancer 
[12], and colorectal cancer [36]. Therefore, we hypothe-
sized that PART1 knockdown also serves as an important 
suppressor in the occurrence of OC.

Growing research has demonstrated a relatively low 
expression of miR-503-5p in several kinds of human can-
cers, including bladder [37], colon [38], and cervical [39] 
cancers. In the current study, a depressed expression of 
miR-503-5p in OC tissues was determined. There are 
also some studies suggesting that lncRNAs interact with 
miR-503-5p to modulate tumor progression in OC and 

Fig. 6  FOXK1 overexpression reverses the ameliorative malignant behaviors of OC caused by PART1 knockdown. A The expression of PART1 after 
transfection of pcDNA3.1-FOXK1/pcDNA3.1 into SK-OV-3 cells was detected by qRT-PCR. ***P < 0.001 vs. the pcDNA3.1 group. B-D The viability, 
migration, and invasion of SK-OV-3 cells transfected with different plasmids was measured by MTT assay, wound healing assay, and transwell 
invasion assay. *P < 0.05, **P < 0.01, ***P < 0.001 vs. the sh-NC + pcDNA3.1-NC group; ##P < 0.01, ###P < 0.001 vs. the sh-PART1–2 + pcDNA3.1-NC 
group
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cervical cancer [21, 40, 41]. In this study, miR-503-5p 
was confirmed to be a target of PART1, as well as an 
inverse correlation between them. The target relation-
ship between PART1 and miR-503-5p is also verified in 
tongue squamous cell carcinoma [22]. We surmised that 
PART1 knockdown may also exert the negative influ-
ences on the progression of OC via regulation of miR-
503-5p. Through the feedback verification experiments, 
we discovered that the inhibiting effects of PART1 silenc-
ing on the oncogenicity of SK-OV-3 cells were reversed 
by transfection of miR-503-5p inhibitor. These results 
further verified our inferences and suggested that silenc-
ing of PART1 retards the development of OC through 
modulating miR-503-5p.

High expression of FOXK1 is identified in various 
human cancers and may be deeply involved in tumor 
oncogenicity, such as gastric [24], pancreatic [26], colo-
rectal [27] cancers, and osteosarcoma [25]. In line with 
the previous results, an increased expression of FOXK1 
was determined in OC tissues in this study, which sug-
gested that FOXK1 is an oncogene in OC. More impor-
tantly, a recent research on OC progression conducted 
by Li et  al. has uncovered that FOXK1 is also upregu-
lated in OC tissues, and the high expression of FOXK1 is 
closely associated with the enhancement of cell prolifera-
tion and metastasis in OC [29]. In the current study, we 
have validated that FOXK1 expression is positively cor-
related with PART1 in OC tissues. Given this, we specu-
lated that FOXK1 may be regulated by PART1 to mediate 
the development of OC. The results of feedback verifi-
cation experiments demonstrated that overexpressed 
FOXK1 partly reversed the suppressive effects of PART1 

knockdown on cell viability and metastasis. Additionally, 
FOXK1 is also a direct downstream gene of miR-503-5p 
and inversely modulated by miR-503-5p. Thus, the 
PART1/miR-503-5p/FOXK1 axis may be crucial for the 
occurrence and development of OC.

Conclusions
In summary, this study revealed that PART1 acts as 
an endogenous sponge of miR-503-5p, and FOXK1 is a 
direct target gene of miR-503-5p. Decreased PART1 miti-
gates the oncogenicity of OC through mediating the miR-
503-5p/FOXK1 axis. The current study demonstrates 
that repression of PART1 attenuates OC development 
in  vitro and in  vivo, indicating it may act as a potential 
therapeutic target for OC.
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